Warning: Undefined array key "translationlc" in /usr/www/users/fabook/_diggets/doc/v2/lib/plugins/translation/action.php on line 237

Warning: Cannot modify header information - headers already sent by (output started at /usr/www/users/fabook/_diggets/doc/v2/lib/plugins/translation/action.php:237) in /usr/www/users/fabook/_diggets/doc/v2/inc/Action/Export.php on line 104

Warning: Cannot modify header information - headers already sent by (output started at /usr/www/users/fabook/_diggets/doc/v2/lib/plugins/translation/action.php:237) in /usr/www/users/fabook/_diggets/doc/v2/inc/Action/Export.php on line 104

Warning: Cannot modify header information - headers already sent by (output started at /usr/www/users/fabook/_diggets/doc/v2/lib/plugins/translation/action.php:237) in /usr/www/users/fabook/_diggets/doc/v2/inc/Action/Export.php on line 104
====== GorillaScript ====== GorillaScript is a precompiled scripting language, which parses delphi pascal code, compiles to a bytecode format and executes it afterwards. It is possible to use only the bytecode files in release state for faster execution. The scripting was not developed for ultra-fast execution, the more its intention is to use it as GUI interface on top of the firemonkey framework. But of course we will optimize speed and performance in future. You can write script methods for event types like the TNotifyEvent of a TTimer.OnTimer (extendable). GorillaScript syntax is inspired by new delphi syntax and the parser is based on the open-source Castalia Parser. Not all syntax elements are supported yet, but most of them like, classes, enumerations, sets, fields, functions, procedures, properties and much more. To combine your Gorilla3D application with the scripting, the system allows to register native types like classes, records, interfaces, enumerations and sets. It is possible to use GorillaScript with all Gorilla3D available components and classes. Besides the regular usage for FMX and Gorilla3D components, GorillaScript is intended to be used for writing shaders (not implemented yet!) ===== Features ===== * Registering of native classes, interfaces, records, enumeration types and set types * Usage of native data types: Int8, UInt8, ShortInt, Byte, Int16, UInt16, SmallInt, Word, Int32, UInt32, Integer, Cardinal, LongInt, LongWord, Int64, UInt64, Single, Double, String, Pointer, Boolean, TValue, TMethod, Nil * Usage of arrays with variant content * Declaring script classes, Interfaces, enumeration types, set types * Declaring local script variables * Declaring fields, properties and methods (function / procedure / constructor / destructor / class function / class procedure) in script classes * Class properties with accessors to fields and methods * Declaring global script functions / procedures * Mathmatical operations: add, subtract, multiply, divide, modulo * Boolean operations: equal, not-equal, less, less-equal, greater, greater-equal, not, and, or, xor * Bitwise operations: and, or, xor, shr, shl * Compiler defines (automatically all default delphi-defines will be available, f.e. "MSWINDOWS", "ANDROID", "CPUX86", "CPUX64", ...) * For-Loops, While-Do-Loops, Repeat-Loops * If-Then-Else-Statements * Case-Statements * In-Operator for checking enumerator in sets or strings in other strings * Addition and subtraction on sets * Possibility to intercept stdio operations with individual handlers * Registering new native event types for interacting with script * Utilities for math functions (System.Math.TMath), ui (FMX.UI.TUI), stdio functions (System) and more. ==== Types ==== Like Delphi/ObjectPascal, GorillaScript is also a typed scripting language. Each variable, parameter or return-value needs to be declared by a specific type. ^DataType ^Range ^Format^ |Int8|-128..127|Signed 8-bit| |UInt8|0..255|Unsigned 8-bit| |ShortInt|-128..127|Signed 8-bit| |Byte|0..255|Unsigned 8-bit| |Int16|-32768..32767|Signed 16-bit| |UInt16|0..65535|Unsigned 16-bit| |SmallInt|-32768..32767|Signed 16-bit| |Word|0..65535|Unsigned 16-bit| |Int32|-2147483648..2147483647|Signed 32-bit| |UInt32|0..4294967295|Unsigned 32-bit| |Integer|-2147483648..2147483647|Signed 32-bit| |Cardinal|0..4294967295|Unsigned 32-bit| |LongInt| 32-bit platforms and 64-bit Windows platforms: -2147483648..2147483647; 64-bit POSIX platforms include iOS and Linux: -9223372036854775808..9223372036854775807 | Signed 32-bit / Signed 64-bit| |LongWord|32-bit platforms and 64-bit Windows platforms: 0..4294967295; 64-bit POSIX platforms include iOS and Linux: 0..18446744073709551615| Unsigned 32-bit/Unsigned 64-bit| |Int64|-9223372036854775808..9223372036854775807|Signed 64-bit| |UInt64|0..18446744073709551615|Unsigned 64-bit| |Single|1.18e-38 .. 3.40e+38|4 Bytes| |Double|2.23e-308 .. 1.79e+308|8 Bytes| |String|Unicode WideChar String|each Char of fixed 2 Bytes| |Pointer|NIL/Ordinal|4 Bytes (32-Bit) / 8 Bytes (64-Bit)| |Boolean|TRUE/FALSE|1 Byte| |TArray| var LArr1 : TArray; begin LArr1 := TArray.Create(5); LArr1[0] := 'abc'; LArr1[1] := 123.25; LArr1[2] := true; LArr1[4] := LArr1[0]; System.WriteLn(LArr1.ToString() + #13#10); end; |Dynamic Array with variable content| |TValue| var LVal : TValue; begin LVal := 'StringValue'; System.WriteLn(LVal); end; |Variant type with variable content| |TMethod| Do not use directly in scripts.|Reference record structure to link scripting and native methods| |Class| ... type TMyClass = class(TObject) private protected public published end; TMyClass2 = class(TMyClass) end; TMyClass3 = class(TMyClass2) end; ... |Class structure allowing inheritance| |Record|Can not be declared in GorillaScript. Only native registration allowed. |Record structure with fields but without inheritance| |Interface| ITestInterface = interface(IInterface) ['{12345678-1234-1234-12345678}'] end; | | |Enumeration| TTestEnum = (One, Two, Three); |1-8 Bytes| |Set| TTestSet = set of TTestEnum; |1-8 Bytes| ==== Operators ==== ^Operator ^Type ^Description ^ |+|mathmatical|Addition or concatenation| |-|mathmatical|Subtraction| |*|mathmatical|Multiplication| |/|mathmatical|Division| |div|mathmatical|Division| |mod|mathmatical|Modulo| |=|boolean|compare if 2 values are equal| |<>|boolean|compare if 2 values are not equal| |<=|boolean|compare if first value is smaller/less than second value or both values are equal| |>=|boolean|compare if first value is greater/larger than second value or both values are equal| |<|boolean|compare if first value is smaller/less than second value| |>|boolean|compare if first value is greater/larger than second value| |not|boolean|negate/invert value| |and|boolean|operation to concatenate 2 boolean values| |or|boolean|operation to concatenate 2 boolean values| |xor|boolean|operation to concatenate 2 boolean values| |and|bitwise|operation to concatenate 2 value on low level| |or|bitwise|operation to concatenate 2 value on low level| |xor|bitwise|operation to concatenate 2 value on low level| |shr|bitwise|operation to shift by a specific number of bits to the right| |shl|bitwise|operation to shift by a specific number of bits to the left| ==== Routines ==== In GorillaScript you can define global functions/procedures and class/interface methods. Declaration and calling conventions should be comparable to Delphi/ObjectPascal. ==== Global Functions and Procedures ==== program demo; uses System.SysUtils; function Calculate(A : Integer; B : Double) : Double; begin Result := A * B; end; procedure Output(AStr : String; _A : Integer; _B : Double); var LStr : String; begin LStr := Calculate(_A, _B).ToString(); System.WriteLn(AStr + LStr); end; procedure Main(); begin Output('Result = ', 10, 123.45); end; begin Main(); end. ==== Special Features ==== GorillaScript provides some useful features for faster development, which are not compatible with Delphi. So don't use those, if you'd like to use your source in both (Delphi & GorillaScript) * Auto-TypeCasts for simple types, f.e. combine a string and integer without conversion System.WriteLn('Value is ' + LInt32Val); * Implicit rounding of floats, when needed on operations * Extended subtract operator on strings (String.Replace) LValue := 'Hello World'; LStr := LValue1 - 'Hello '; // will produce: "World" System.WriteLn(LStr); * Extended multiplication operator on strings (String.Repeat) LValue := 'Hello '; LStr := LValue * 3; // will produce: "Hello Hello Hello " System.WriteLn(LStr); * Extended division operator on strings (String.SubString) LValue := 'Hello World'; LArr := LValue / 4; // will produce an array with 4 elements ['Hel', 'lo ', 'Wor', 'ld'] System.WriteLn(LArr.ToString()); LValue := 'Hello World'; LArr := LValue / ' '; // will produce an array with 2 elements ['Hello', 'World'] System.WriteLn(LArr.ToString()); * Extended shift-left operator on strings (String.SubString) LValue := 'Hello World'; LStr := LValue shl 3; // will produce: "lo World" System.WriteLn(LStr); * Extended shift-right operator on strings (String.SubString) LValue := 'Hello World'; LStr := LValue shr 3; // will produce: "Hello Wo" System.WriteLn(LStr); * In-Operator for strings if ('ello' in 'Hello World') then System.WriteLn('yes!'); * case-statement labels allow all types (not only ordinal types) LStr := 'Hello'; case LStr of 'Hellooo' : System.WriteLn('case #1'); 'Hallo'..'Hulu' : System.WriteLn('case #2'); else System.WriteLn('case else'); end; * Variant arrays by default var LArr1 : TArray; begin LArr1 := TArray.Create(5); LArr1[0] := 'abc'; LArr1[1] := 123.25; LArr1[2] := true; LArr1[4] := LArr1[0]; System.WriteLn(LArr1.ToString() + #13#10); end; ====== Stages ====== GorillaScript is based on the typical scripting stages: - parse - compile - execute Those stages describe a full execution process, but can be reduced to single stage, by only using the bytecode format. This means you can save a compiled bytecode to file and load it independently again to execute it. This may be useful for release versions of your app, where nobody should see any script source code. ====== Implementation ====== The scripting component provides 2 types of implementation. You're allowed to run a script temporarily or in keep-alive mode. ===== Temporary Scripts ===== Temporary script will be executed once and all instances destroyed afterwards. By temporary scripts no further interaction with created instance is possible. This feature is useful for quick manipulation purposes. The most important usage may be simulating a Delphi context only by scripting, f.e. in a console application. program ScriptDemo; {$APPTYPE CONSOLE} {$R *.res} uses System.SysUtils, Gorilla.Script in '..\..\lib\script\Gorilla.Script.pas'; var LEngine : TGorillaScriptEngine; begin try WriteLn('*** GORILLA3D SCRIPTING TEST ***'); WriteLn(''); LEngine := TGorillaScriptEngine.Create(nil); try {$IFDEF MSWINDOWS} LPath := ''; {$ENDIF} {$IFDEF ANDROID} LPath := IncludeTrailingPathDelimiter( System.IOUtils.TPath.GetHomePath()); {$ENDIF} // load and parse program source code LEngine.LoadFromFile(LPath + 'app.pas'); // compile parsed entities to bytecode LEngine.Compile(); // execute bytecode LEngine.Execute(); finally FreeAndNil(LEngine); end; except on E: Exception do Writeln(E.ClassName, ': ', E.Message); end; end. ===== Keep-Alive Scripts ===== Keep-Alive script integration allows users to execute GorillaScript on top of an existing Delphi application. This may be the most popular mode, because it allows to create visual components and to interact with them by events. By this mode you can setup a form completely by scripting, without loosing capabilities of the native Delphi application. unit TestWinU; interface uses System.SysUtils, System.Types, System.UITypes, System.Classes, System.Variants, FMX.Types, FMX.Controls, FMX.Forms, Gorilla.Script; type TTestWin = class(TForm) procedure FormCreate(Sender: TObject); procedure FormDestroy(Sender: TObject); protected FEngine : TGorillaScriptEngine; public end; var Form2: TForm2; implementation {$R *.fmx} uses System.IOUtils; { TTestWin } procedure TTestWin.FormCreate(Sender: TObject); var LPath : String; begin // create script engine FEngine := TGorillaScriptEngine.Create(nil); {$IFDEF MSWINDOWS} LPath := ''; {$ENDIF} {$IFDEF ANDROID} LPath := IncludeTrailingPathDelimiter(System.IOUtils.TPath.GetHomePath()); {$ENDIF} // load and parse program source code FEngine.LoadFromFile(LPath + 'GorillaTest.pas'); // compile parsed entities to bytecode FEngine.Compile(); // execute bytecode in keep-alive mode (parameter = true) FEngine.Execute(true); // script instances are still available from here... end; procedure TTestWin.FormDestroy(Sender: TObject); begin FreeAndNil(FEngine); end; end. ===== IO-Interceptor ===== In script you can use the functions "System.Write", "System.WriteLn", "System.Read" and "System.ReadLn" to read/write from/to standard input-output (stdio). For console applications no further treatment is needed. On GUI applications this leads to exceptions, because the stdio is not available. Due to that, we provide an interceptor class to catch stdio calls. type TGorillaScriptIOHandlerGUI = class(TGorillaScriptIOHandler) public class var Memo : TMemo; class procedure Write(AValue : String); override; class procedure WriteLn(AValue : String); override; class function Read() : String; override; class function ReadLn() : String; override; end; ... { TGorillaScriptIOHandlerGUI } class procedure TGorillaScriptIOHandlerGUI.Write(AValue : String); begin TThread.Synchronize(nil, procedure() begin Memo.Lines.Add(AValue); end ); end; class procedure TGorillaScriptIOHandlerGUI.WriteLn(AValue : String); begin TThread.Synchronize(nil, procedure() begin Memo.Lines.Add(AValue); end ); end; class function TGorillaScriptIOHandlerGUI.Read() : String; begin Result := ''; end; class function TGorillaScriptIOHandlerGUI.ReadLn() : String; begin Result := ''; end; In this example we need to assign the memo to the interceptor, so the component knows where to write lines to: TGorillaScriptIOHandlerGUI.Memo := Memo1; To activate the IO-Interceptor you just need to set it as default interceptor: TGorillaScriptIOHandler.Default := TGorillaScriptIOHandlerGUI; ====== Syntax ====== Even if we've tried to stay as close as possible to Delphi language syntax, some restrictions and extended features have to be kept in mind. ===== Program ===== Every GorillaScript starts with a main unit, where you define a typical pascal program. In the program initialization block you can call functions. You will need to define at least one global function here and call it. **It is not possible to use variables in global context.** You can only define local variables in Main() routine. program Test; interface procedure Main(); begin System.WriteLn('Hello world!'); end; begin Main(); end. ==== Includes ==== Besides the System unit, you **always need to include units**, when using types of those. **Even when using types indirectly**, like as field or property type. The **complete qualified unit name is needed** for successful inclusion, f.e. "System.Types". Units can be included in interface section by the usage of the "uses" identifier. unit Test; interface uses System.Types, System.Classes, FMX.UI, FMX.StdCtrls; ... ===== Global Functions ===== procedure Main(); begin // write some code here end; ===== Global Constants ===== const DEFAULT_STR : String = 'Test' + '-Output-' + 'Test:'; ===== Local Variables ===== Local variables are declared like Delphi syntax by the "var" identifier. procedure Test(); var i : Integer; LStr : String; LFloat1, LFloat2 : Single; begin // write some code here end; ===== Classes ===== ==== Self ==== At the current development state it is **always necessary to supply the self-reference** variable when accessing fields, properties or methods of the class. //In future this will be removed like in Delphi syntax.// Wrong syntax FMyField := 123; Correct syntax Self.FMyField := 123; ==== Scripting ==== GorillaScript allows to declare new classes in script. Class inheritance is provided, but only for script classes. **Only TObject and TInterbasedObject are allowed as native ancestors.** ... type TMyClass = class(TObject) private protected public published end; TMyClass2 = class(TMyClass) end; TMyClass3 = class(TMyClass2) end; ... Scripting classes allow usage of visibility identifiers: private, protected, public and published. === Fields === TTest = class protected FFieldBool : Boolean; FFieldStr : String; FFieldInt : Int32; public FFieldDbl : Double; FFieldObj : TTest; end; === Properties === Properties are a very useful tool to access fields directly or by a getter or setter method. In the following example we extend our TTest class by a GetFieldBool() and SetFieldBool() protected method. In the public property "FieldBool" we can access the protected field "FFieldBool" by those methods indirectly. We than have the option to influence behaviour. The second property "FieldStr" is set to read-only on our protected field "FFieldStr", which forbids writing to. Of course this can also be done by getter or setter methods. The third property "FieldInt" allows reading and writing operations directly on the protected field "FFieldInt" Note: You can mix getter/setter methods and direct field access on read/write. TTest = class protected FFieldBool : Boolean; FFieldStr : String; FFieldInt : Int32; function GetFieldBool() : Boolean; procedure SetFieldBool(AValue : Boolean); public FFieldDbl : Double; FFieldObj : TTest; property FieldBool : Boolean read GetFieldBool write SetFieldBool; property FieldStr : String read FFieldStr; property FieldInt : Int32 read FFieldInt write FFieldInt; end; === Methods === Functions and procedures declared in a class, interface or record are called methods. Those can be defined in all available viewspaces (private, protected, public, published) like fields. But besides a simple object method declaration, Delphi offers constructors, destructors and class functions / class procedures. They are declared by a different reserved word, because their behaviour is a bit different than the simple methods. Constructors are getting automatically called on instance creation and destructors when an instance is about to be destroyed. Class functions / procedures OR static methods are like simple functions and procedures, but they are called in different context. Regular functions/procedures are called by an instance (object) of the class, while static methods are called by the class itself. So they have no instance context and therefore no access to fields or object methods. This is getting important, when using "Self" in those methods. For static methods it is the class type itself, but for object methods it's the object. TTest = class protected [...] function Calculate(AFactor : Double) : Double; virtual; public [...] constructor Create(); virtual; destructor Destroy(); override; class function GetDefaultStr() : String; procedure Output(AIdx : Integer); end; After our method head declaration is done, we need to implement the function. /// /// Test Scripting Unit /// unit app.test; interface const DEFAULT_STR : String = 'Test' + '-Output-' + 'Test:'; type TTest = class [...] end; implementation { TTest } constructor TTest.Create(); begin inherited Create(); // use property test Self.FieldBool := true; Self.FFieldStr := 'Hello World'; Self.FFieldInt := 124; Self.FFieldDbl := 1.25; Self.FFieldObj := Self; end; destructor TTest.Destroy(); begin inherited Destroy(); end; function TTest.GetFieldBool() : Boolean; begin Result := Self.FFieldBool; System.WriteLn('TTest.GetFieldBool() called'); end; procedure TTest.SetFieldBool(AValue : Boolean); begin Self.FFieldBool := AValue; System.WriteLn('TTest.SetFieldBool() called'); end; class function TTest.GetDefaultStr() : String; begin Result := DEFAULT_STR; end; procedure TTest.Output(AIdx : Integer); var LTmpStr : String; LSeed : Single; begin LSeed := System.RandomFloat(); LTmpStr := TTest.GetDefaultStr() + 'Object{' + '"fieldStr":"' + Self.FFieldStr + '", "fieldInt":"' + Self.FFieldInt.ToString() + '", "fieldDbl":"' + Self.FFieldDbl.ToString() + '", "fieldBool":"' + Self.FieldBool.ToString() + '", "fieldObj":"' + Self.FFieldObj.ToJSON() + '"}'; LTmpStr := AIdx.ToString() + #9' [' + LSeed.ToString() + ']'#9#9 + LTmpStr + ' => ' + Self.Calculate(AIdx * 0.5).ToString(); System.WriteLn(LTmpStr); end; function TTest.Calculate(AFactor : Double) : Double; begin Result := Self.FFieldInt.ToDouble() + Self.FFieldDbl * AFactor; end; end. ==== Native ==== procedure RegisterMyClasses(AEngine : TGorillaScriptEngine); begin AEngine.RegisterNativeClasses([TMyNativeClass1, TMyNativeClass2]); end; ===== Records ===== ==== Scripting ==== Declarations of records in script is currently not possible. ==== Native ==== procedure RegisterMyNativeRecords(AEngine : TGorillaScriptEngine); begin AEngine.RegisterNativeStructs([TypeInfo(TPoint), TypeInfo(TRectF)]); end; ===== Interfaces ===== ==== Scripting ==== Script interfaces allow to declare properties and methods. Fields are not allowed in interfaces. ITestInterface = interface(IInterface) ['{12345678-1234-1234-12345678}'] end; === Methods === === Properties === ==== Native ==== Registration of native interfaces differs from the other registrations methods due to RTTI limitations. We do need the full qualified name of your native interface as string variable. procedure RegisterMyInterfaces(AEngine : TGorillaScriptEngine); begin AEngine.RegisterNativeInterfaces(['System.Classes.IControl']); end; Due to missing RTTI of interfaces, it is not possible to access native interface properties. Only interface methods are accessable. ===== Enumerations ===== Native and script enumeration types are supported. ==== Scripting ==== Enumeration values can be declared with or without a preset value. TTestEnum = (teOne, teTwo = 1, teThree = 2); ==== Native ==== procedure RegisterMyEnums(AEngine : TGorillaScriptEngine); begin AEngine.RegisterNativeEnums([TypeInfo(TFontStyle), ...]); end; ===== Sets ===== Native and script set of enumeration types are supported. ==== Scripting ==== In scripting sets always need an existing script/native enumeration type. Dynamic declarations like "TTestSet = set of (EnumVal1, EnumVal2, EnumVal3);" __are not allowed!__ TTestSet = set of TTestEnum; ==== Native ==== procedure RegisterMySets(AEngine : TGorillaScriptEngine); begin AEngine.RegisterNativeSets([TypeInfo(TStyledSettings), TypeInfo(TShiftState)]); end; ===== Events ===== You are allowed to declare a scripting method with the same parameters like a native event and to assign to a native instance. The script will manage to call your scripting method, when a native instance event getting called by delphi. unit EventTest; interface uses FMX.UI; type TMyClass = class(TObject) protected FButton : TButton; procedure DoOnClick(ASender : TObject); public constructor Create(); end; implementation { TMyClass } constructor TMyClass.Create(); begin inherited Create(); Self.FButton := TButton.Create(TUI.GetMainForm()); // Link script method with native component event // When Delphi calls the native event, the script method will be called. Self.FButton.OnClick := @Self.DoOnClick; end; procedure TMyClass.DoOnClick(ASender : TObject); begin TUI.ShowMessage('Button clicked!'); end; end. ===== Loops ===== ==== For-Loop ==== System.WriteLn('for-loop with continue should compute 9'); LVal := 0; for LInt := 0 to 9 do if (LInt = 5) then Continue else LVal := LVal + 1; System.WriteLn(LVal.ToString()); System.WriteLn('for-loop with break should compute 5'); LVal := 0; for LInt := 0 to 9 do begin if (LInt = 5) then begin Break; end else LVal := LVal + 1; end; System.WriteLn(LVal.ToString()); ==== Repeat-Until-Loop ==== System.WriteLn('repeat-loop with multiple condition should compute 5'); LInt := 0; repeat LInt := LInt + 1; until (LInt >= 10) and (LInt > 5) or (LInt = 5); System.WriteLn(LInt.ToString()); System.WriteLn('repeat-loop with break should compute 6'); LInt := 0; repeat if (LInt = 6) then Break; LInt := LInt + 1; until (LInt >= 10); System.WriteLn(LInt.ToString()); ==== While-Do-Loop ==== System.WriteLn('while-loop with break should compute 6'); LInt := 0; while (LInt < 10) do begin if (LInt = 6) then Break; LInt := LInt + 1; end; System.WriteLn(LInt.ToString()); System.WriteLn('while-loop with continue should compute 9'); LInt := 0; LVal := 0; while (LInt < 10) do begin LInt := LInt + 1; if (LInt = 6) then Continue; LVal := LVal + 1; end; System.WriteLn(LVal.ToString()); ===== If-Statements ===== System.WriteLn('complex if-condition should return 123.'); LInt := 123; if (LInt > 100) then begin if (LInt > 50) then begin if (LInt > 25) then if (LInt > 10) then begin System.WriteLn('123'); end else System.WriteLn('FALSE (4)') else System.WriteLn('FALSE (3)'); end else System.WriteLn('FALSE (2)'); end else System.WriteLn('FALSE (1)'); ===== Case-Of-Statements ===== System.WriteLn('"case LInt of" should return : case #3'); LInt := 8; case LInt of 0 : System.WriteLn('case #1'); 1..2 : System.WriteLn('case #2'); 3..4, 5, 6..9 : begin System.WriteLn('case #3'); end; else System.WriteLn('case else'); end; System.WriteLn('"case LStr of" should return : case #2'); LStr := 'Hello'; case LStr of 'Hellooo' : System.WriteLn('case #1'); 'Hallo'..'Hulu' : System.WriteLn('case #2'); else System.WriteLn('case else'); end; ====== Internals ====== ===== SearchPaths ===== If no further search paths were set in your TGorillaScriptEngine component, the scripting will take the first script file directory as base directory to search from. You have to set all necessary search paths __before__ parsing stage starts. FEngine.SearchPaths.Add('./subdir/'); FEngine.SearchPaths.Add('C:\test\dir\'); ===== User-Specific Compiler Defines ===== You are allowed to add global user specific compiler defines in your TGorillaScriptEngine component. You have to apply those defines __before__ parsing stage starts. FEngine.CompilerDirectives.Add('THE_FORCE_IS_WITH_YOU'); ===== Predefined Libs ===== GorillaScript provides some basic libraries, like UI components (buttons, edits, ...) or Gorilla3D components. Those libraries automatically register all necessary types for you, by simply calling their registration function. General libs: * Gorilla.Script.Lib.OS (automatically registered) * Gorilla.Script.Lib.Math (automatically registered) * Gorilla.Script.Lib.UI (RegisterUIComponents) Modular Gorilla3D libs: * Gorilla.Script.Lib.Gorilla (RegisterGorillaComponents) * Gorilla.Script.Lib.Particles (RegisterGorillaParticles) * Gorilla.Script.Lib.Physics (RegisterGorillaPhysics) * Gorilla.Script.Lib.Audio (RegisterGorillaAudio) * Gorilla.Script.Lib.Input (RegisterGorillaInput) * Gorilla.Script.Lib.Utils (RegisterGorillaUtils) * Gorilla.Script.Lib.GUI (RegisterGorillaGUI) Gorilla.Script.Lib.UI.RegisterUIComponents(FEngine); Gorilla.Script.Lib.Gorilla.RegisterGorillaComponents(FEngine); Gorilla.Script.Lib.Particles.RegisterGorillaParticles(FEngine); Gorilla.Script.Lib.Physics.RegisterGorillaPhysics(FEngine); Gorilla.Script.Lib.Audio.RegisterGorillaAudio(FEngine); Gorilla.Script.Lib.Input.RegisterGorillaInput(FEngine); Gorilla.Script.Lib.Utils.RegisterGorillaUtils(FEngine); Gorilla.Script.Lib.GUI.RegisterGorillaGUI(FEngine); ====== Examples ====== ==== A simple script ==== program GorillaTest; uses System.SysUtils, GorillaTest.App; procedure Main(); var LApp : TGorillaApp; begin // this script is used in keep-alive mode // the created script object will be destroyed automatically // when the executor will be destroyed. LApp := TGorillaApp.Create(); end; begin Main(); end. unit GorillaTest.App; interface uses System.SysUtils, FMX.OS, FMX.UI, FMX.Types, FMX.Forms, FMX.StdCtrls; type TGorillaApp = class protected FForm : TForm; FButton : TButton; FEdit : TEdit; public property Form : TForm read FForm; property Button : TButton read FButton; property Edit : TEdit read FEdit; constructor Create(); override; procedure DoOnButtonClicked(ASender : TObject); end; implementation constructor TGorillaApp.Create(); begin inherited Create(); Self.FForm := TUI.GetMainForm(); Self.FEdit := TEdit.Create(Self.FForm); Self.FEdit.Parent := Self.FForm; Self.FEdit.Width := 200; Self.FEdit.Height := 32; Self.FEdit.Align := TAlignLayout.Top; Self.FEdit.Margins.Left := 8; Self.FEdit.Margins.Right := 8; Self.FEdit.Margins.Top := 4; Self.FEdit.Margins.Bottom := 4; Self.FButton := TButton.Create(Self.FForm); Self.FButton.Parent := Self.FForm; Self.FButton.Position.Point := TPointF.Create(200, 128); Self.FButton.Text := 'Click me!'; Self.FButton.Size.Width := 128; Self.FButton.Size.Height := 48; // we link here our scripting method to a native event property // Gorilla script executor will forward this OnClick event to our scripting method Self.FButton.OnClick := @Self.DoOnButtonClicked; end; procedure TGorillaApp.DoOnButtonClicked(ASender : TObject); var LBtn : TButton; begin // we just move the button randomly if (Self.Button = ASender) then begin LBtn := ASender; LBtn.Position.Point := TPointF.Create( System.Random(400), System.Random(400)); end; end; end. ==== 3D Demo ==== program Gorilla3DTest; uses System.SysUtils, FMX.UI, Gorilla3DTest.App; procedure Main(); var LApp : TGorillaApp; begin // this script is used in keep-alive mode // the created script object will be destroyed automatically // when the executor will be destroyed. LApp := TGorillaApp.Create(); end; begin Main(); end. unit Gorilla3DTest.App; interface uses System.SysUtils, System.Math, FMX.OS, FMX.UI, FMX.Types, FMX.Forms, FMX.StdCtrls, FMX.Objects3D, Gorilla.Viewport, Gorilla.Camera, Gorilla.Light, Gorilla.Controller.Input, Gorilla.Material.Lambert, Gorilla.Material.Bumpmap; const GORILLA_CAPTION : String = 'Gorilla3D Scripting 3D Demo'; type TGorillaApp = class protected FWindow : TForm; FViewport : TGorillaViewport; FCenter : TDummy; FCamera : TGorillaCamera; FLight : TGorillaLight; FCube : TGorillaCube; FSphere : TGorillaSphere; FPlane : TGorillaPlane; FMaterial1 : TGorillaLambertMaterialSource; FMaterial2 : TGorillaBumpMapMaterialSource; FTimer : TTimer; FInput : TGorillaInputController; FSinCurve : Double; procedure DoOnKeyUp(ASender : TObject; AKeyCode : Integer); procedure DoOnTimer(ASender : TObject); public property Viewport : TGorillaViewport read FViewport; property Camera : TGorillaCamera read FCamera; property Light : TGorillaLight read FLight; property Cube : TGorillaCube read FCube; property Sphere : TGorillaSphere read FSphere; property Plane : TGorillaPlane read FPlane; property Timer : TTimer read FTimer; constructor Create(); override; end; implementation constructor TGorillaApp.Create(); var LForm : TForm; begin inherited Create(); LForm := TUI.GetMainForm(); Self.FSinCurve := 0.0; Self.FWindow := LForm; Self.FWindow.Caption := GORILLA_CAPTION; // create viewport Self.FViewport := TGorillaViewport.Create(LForm); Self.FViewport.Parent := LForm; // create dummy and camera Self.FCenter := TDummy.Create(Self.FViewport); Self.FCenter.Parent := Self.FViewport; Self.FCamera := TGorillaCamera.Create(Self.FCenter); Self.FCamera.Parent := Self.FCenter; Self.FCamera.Target := Self.FCenter; Self.FCamera.Position.Point := TPoint3D.Create(0, -1, 10); // create light source Self.FLight := TGorillaLight.Create(Self.FViewport); Self.FLight.Parent := Self.FCamera; Self.FLight.Position.Point := TPoint3D.Create(0, -10, 0); Self.FLight.LightType := TLightType.Spot; Self.FLight.RotationAngle.X := -90; // create cube and sphere Self.FCube := TGorillaCube.Create(Self.FViewport); Self.FCube.Parent := Self.FViewport; Self.FCube.Scale.Point := TPoint3D.Create(5, 5, 5); Self.FMaterial1 := TGorillaLambertMaterialSource.Create(Self.FCube); Self.FMaterial1.Parent := Self.FCube; Self.FMaterial1.Texture.LoadFromFile('..\assets\textures\crate1_diffuse.png'); Self.FCube.MaterialSource := Self.FMaterial1; Self.FSphere := TGorillaSphere.Create(Self.FCube); Self.FSphere.Parent := Self.FCube; Self.FSphere.Position.Point := TPoint3D.Create(-3, -1, 0); Self.FMaterial2 := TGorillaBumpMapMaterialSource.Create(Self.FSphere); Self.FMaterial2.Parent := Self.FSphere; Self.FMaterial2.Texture.LoadFromFile('..\assets\textures\bump\harshbricks-albedo.png'); Self.FMaterial2.NormalMap.LoadFromFile('..\assets\textures\bump\harshbricks-normal.png'); Self.FMaterial2.DisplacementMap.LoadFromFile('..\assets\textures\bump\harshbricks-height5-16.png'); Self.FMaterial2.SpecularMap.LoadFromFile('..\assets\textures\bump\harshbricks-ao2.png'); Self.FSphere.MaterialSource := Self.FMaterial2; Self.FPlane := TGorillaPlane.Create(Self.FViewport); Self.FPlane.Parent := Self.FViewport; Self.FPlane.RotationAngle.X := -90; Self.FPlane.SetSize(100, 100, 1); Self.FPlane.MaterialSource := Self.FMaterial1; // create a timer for animation Self.FTimer := TTimer.Create(Self.FViewport); Self.FTimer.Parent := Self.FViewport; Self.FTimer.Interval := 16; Self.FTimer.OnTimer := @Self.DoOnTimer; Self.FInput := TGorillaInputController.Create(LForm); Self.FInput.Supported := [TGorillaInputDeviceType.Keyboard]; Self.FInput.OnKeyUp := @Self.DoOnKeyUp; Self.FInput.Enabled := true; end; procedure TGorillaApp.DoOnKeyUp(ASender : TObject; AKeyCode : Integer); begin TUI.ShowInfo('Taste gedrückt = ' + AKeyCode.ToChar()); end; procedure TGorillaApp.DoOnTimer(ASender : TObject); var LY, LX : Double; begin // update window caption with FPS for checking performance Self.FWindow.Caption := GORILLA_CAPTION + ' ' + Self.FViewport.FPS.ToString() + ' FPS'; // animate 3D elements Self.FViewport.BeginUpdate(); try Self.FSinCurve := Self.FSinCurve + 0.1; LY := TMath.Sin(Self.FSinCurve); LX := TMath.Cos(Self.FSinCurve); Self.FCube.Position.Point := TPoint3D.Create(0, LY * 2, 0); Self.FCube.RotationAngle.Y := Self.FCube.RotationAngle.Y + 1; Self.FSphere.RotationAngle.Y := Self.FSphere.RotationAngle.Y - 1; Self.FLight.Position.Point := TPoint3D.Create(LX * 5, -10, LY * 3); finally Self.FViewport.EndUpdate(); end; end; end. Next step: [[interaction|Interaction]]