Renderpasses

In the simplest rendering pipeline you have one rendering loop, where all scene elements are drawn. But in many cases you need additional steps before or after this main loop to produce the visual result you want. An example is a shadow mapping pre-rendering or a post-rendering blur effect.

With Gorilla3D it is possible to easily build your own render pass and integrate it in your rendering pipeline. You can choose between 3 different moments of rendering:

Type Description
TRenderPassType.Pre render-pass will be executed before main loop.
TRenderPassType.Intermediate render-pass will be executed in between main loop (very ineffective - because executed each renderlist element)
TRenderPassType.Post render-pass will be executed after main loop.

Rendering Method

You are allowed to configure a destination / method for your individual render pass. A render destination is the place where computed image data is going to stored to.

  • Context
  • FrameBufferObject (FBO)

While the context (aka. main texture or Default-FBO) is the default texture used for final rendering output, the FrameBufferObject (FBO) is a buffer created for each render pass instance. The FrameBufferObject (FBO) can be used to temporarily store your rendering result and push it to another render pass. For further information read down below.

Type Description
TRenderPassMethod.RenderListToContext Will render all 3D objects in rendering list to context. If a render pass material exists it will be applied, otherwise it will use the 3D object specific material shader.
TRenderPassMethod.RenderListToFBO Will render all 3D objects in rendering list to render pass specific FrameBufferObject (FBO) and its attached textures.
TRenderPassMethod.RectToContext Will render a rectangle to context. The render pass need to have an individual material applied, otherwise an error occurs. Use this method for rendering post effects.
TRenderPassMethod.RectToFBO Will render a rectangle to the render pass specific FrameBufferObject (FBO). The render pass need to have an individual material applied, otherwise an error occurs. Use this method for rendering post effects in a chain of post effects.

In the next step you have to decide, if a one-for-all material shader should be used or the object specific material shaders. Because sometimes you want the full scene just to be rendered from another perspective (like reflection) or you want to store a specific value (like the depth-value in shadow mapping) in the FBO.

Render-Pass Material

To create an individual material shader for your render-pass you need to extend TGorillaRenderPassMaterialSource and TGorillaRenderPassMaterial.

uses
  FMX.Types3D,
  FMX.Materials,
  FMX.MaterialSources,
  Gorilla.Controller;
 
  TMyRenderPassMaterial = class(TGorillaRenderPassMaterial)
    protected
      procedure DoApply(const Context: TContext3D); override;
      procedure DoInitialize(); override;
    public
  end;
 
  TMyRenderPassMaterialSource = class(TGorillaRenderPassMaterialSource)
    protected
      function CreateMaterial() : TMaterial; override;
    public
  end;

Here you can have a look at this example of a render-pass material implementation.

Notice: No multiple targets used here. We just write to default output buffer by gl_FragColor.

uses
  Gorilla.Context.GLES;
 
  ResourceString SOURCE_VS =
    'attribute vec3 a_Position;' +
    '' +
    'uniform mat4 _ModelViewProjMatrix;' +
    '' +
    'varying vec4 v_position;' +
    '' +
    'void main( void ){' +
    '  vec4 fvPosition = vec4(a_Position.x, a_Position.y, a_Position.z, 1.0);' +
    '  v_position = _ModelViewProjMatrix * fvPosition;' +
    '  gl_Position = v_position;' +
    '}';
 
  ResourceString SOURCE_FS =
    'varying vec4 v_position;' +
    '' +
    'void main( void ){' +
    '  gl_FragColor = v_position;' +
    '}';
 
procedure TMyRenderPassMaterial.DoInitialize();
var LOGLBytes : TArray<Byte>;
begin
  LOGLBytes := TEncoding.ASCII.GetBytes(SOURCE_VS);
  FVertexShader := TShaderManager.RegisterShaderFromData('MyRenderPass.fvs', TContextShaderKind.VertexShader, '', [
    TContextShaderSource.Create(TContextShaderArch.GLSL,
      LOGLBytes,
      [
      TContextShaderVariable.Create('ModelViewProjMatrix', TContextShaderVariableKind.Matrix, 0, 4)
      ]
    )
  ]);
 
  LOGLBytes := TEncoding.ASCII.GetBytes(SOURCE_FS);
  FPixelShader := TShaderManager.RegisterShaderFromData('MyRenderPass.fps', TContextShaderKind.PixelShader, '', [
    TContextShaderSource.Create(TContextShaderArch.GLSL,
      LOGLBytes,
      []
    )
  ]);
end;
 
{ TMyRenderPassMaterial }
 
procedure TMyRenderPassMaterial.DoApply(const Context: TContext3D);
begin
  // activate shaders
  Context.SetShaders(FVertexShader, FPixelShader);
  // set model view projection matrix
  TCustomContextOpenGL(Context).SetShaderVariable('ModelViewProjMatrix', Context.CurrentModelViewProjectionMatrix, true);
end;
 
{ TMyRenderPassMaterialSource }
 
function TMyRenderPassMaterialSource.CreateMaterial() : TMaterial;
begin
  Result := TMyRenderPassMaterial.Create(Self);
end;

You than have to overwrite the CreateMaterialSource() method and create your material source. In case you'd like to use the element specific material shaders, return nil in the CreateMaterialSource() method.

function TMyRenderPass.CreateMaterialSource() : TGorillaRenderPassMaterialSource;
begin
  result := TMyRenderPassMaterialSource.Create(Self);
end;

Start / End

The render-pass controller provides a callback event for the start and the end of each rendering cycle. Simply overwrite the protected DoOnRenderPass() method.

Here you can change the view, projection matrices or re-configure OpenGL context. But do not forget to reset your changes on “OnPassEnd”, otherwise the main loop rendering may produce unexpected results.

Here is a short example for a callback function.

var
  FPrevCamView : TMatrix3D;
 
procedure TMyRenderPass.DoOnRenderPass(const AContext : TContext3D;
  const ACount : Integer; const AState : TRenderPassEventState; const APass : TRenderPass);
var LCtx : TCustomContextOpenGL;
begin
  inherited;
 
  LCtx := TCustomContextOpenGL(AContext);
  case AState of
    OnPassBegin:
      begin        
        // deactivate ZTest in OpenGL
        AContext.SetContextState(TContextState.csZTestOff);
 
        // Set view matrix and angle of view
        FPrevCamView := AContext.CurrentCameraMatrix;
        AContext.SetCameraMatrix(GetViewMatrix(AContext));
        AContext.SetCameraAngleOfView(Viewport.CurrentCamera.AngleOfView);
 
        // rendering method for rendering pass
        FFBO.Clear(Point(AContext.Width, AContext.Height), 
          [TRenderTarget.Color_0, TRenderTarget.Depth], 
          TAlphaColorF.Create(0, 0, 0, 0), 0, 0);
 
        // prepare framebufferobject for multiple render targets
        FFBO.Prepare([TRenderTarget.Color_0, TRenderTarget.Depth]);        
      end;
 
    OnPassEnd:
      begin        
        AContext.SetCameraMatrix(FPrevCamView);   
      end;
  end;
end;

Framebuffer-Object (FBO)

Each render pass sets up a default framebuffer object (FFBO) with a default output texture (FFBOTexture), where the result is drawn to. Of course you can change it or apply further rendering targets.

Caution: Multiple render targets are only supported since OpenGLES v3+.

To change the FBO rendering target(s) simply overwrite the protected DoSetupTexturesByViewport() method, like this:

uses
  Gorilla.Context.Texturing;
 
procedure TMyRenderPass.DoSetupTexturesByViewport(const AContext : TContext3D;
  const AWidth, AHeight : Integer);
var LSize : TPoint;
    LUpdateTex : Boolean;
begin
  // update FBO texture size
  LSize := ComputeRenderingSize(AContext, AWidth, AHeight);
 
  LUpdateTex := true;
  if Assigned(FFBOTexture) then
  begin
    // is size really different? - if not leave
    if (FFBOTexture.Width = LSize.X) and (FFBOTexture.Height = LSize.Y) then
      LUpdateTex := false
    else
    begin
      FFBO.UnattachTexture(FFBOTexture.Texture);
      FreeAndNil(FFBOTexture);
    end;
  end;
 
  if LUpdateTex then
  begin
    FFBOTexture := TGorillaTextureBitmap.Create(LSize.X, LSize.Y);
    FFBOTexture.BeginSetup();
    try
      with FFBOTexture do
      begin
        Components := TPixelFormatEx.Depth;
        Format := TPixelFormatEx.Depth;
        MinFilter := TTextureFilter.Nearest;
        MagFilter := TTextureFilter.Nearest;
        WrapS := TGorillaTextureWrap.ClampToBorder;
        WrapT := TGorillaTextureWrap.ClampToBorder;
      end;
    finally
      FFBOTexture.EndSetup();
    end;
 
    // attach the texture to the FBO
    if Assigned(AContext) and Assigned(FFBO) then
        FFBO.AttachTexture(AContext, FFBOTexture.GorillaTexture, TRenderTarget.Color_0);
  end;
end;

Here we changed the FBO texture format to a depth-texture.

The default format is RGBA with an unsigned byte for each component (4 Byte per Pixel).

Multiple Rendering-Targets

As said above, we can use multiple render targets since OpenGLES v3.

Multiple render targets are useful to store values in the shader to different output textures. So you possibly could store the depth, diffuse, specular, normals or alpha values in separated textures. Afterwards you could combine those together in some kind of way. For example this is how deferred rendering works.

In Gorilla3D we create those targets as TGorillaTextureBitmap instances in our render pass. Afterwards we attach those to the framebuffer object (FBO).

Notice: Gorilla3D provides an extended TClearTarget enumeration type called TRenderTarget, where the first 3 values are compatible with the Delphi type (and OpenGLES v2).

TRenderTarget = (Color_0, Depth, Stencil
  {$IFDEF GL_ES_VERSION_3_0},
    Color_1, Color_2, Color_3, Color_4, Color_5, Color_6, Color_7,
    Color_8, Color_9, Color_10, Color_11, Color_12, Color_13, Color_14,
    Color_15
  {$ENDIF});

Creating multiple targets

As seen in the code snippet above, we can simply create a TGorillaTextureBitmap instance in our render-pass class in the DoSetupTexturesByViewport() method.

FMyRenderTargetTexture := TGorillaTextureBitmap.Create(LSize.X, LSize.Y);
FMyRenderTargetTexture.BeginSetup();
try
  with FMyRenderTargetTexture do
  begin
    DataType := TGorillaTextureDataType.dtFloat;
    Components := TPixelFormatEx.RGBA32F;
    Format := TPixelFormatEx.RGBA;
    MinFilter := TTextureFilter.Linear;
    MagFilter := TTextureFilter.Linear;
    WrapS := TGorillaTextureWrap.ClampToBorder;
    WrapT := TGorillaTextureWrap.ClampToBorder;
  end;
finally
  FMyRenderTargetTexture.EndSetup();
end;

Attaching multiple targets

To attach a texture to the framebuffer object we call the AttachTexture() method of the FBO and supply the intended rendertarget (one of the values above).

Caution: Not all GPU's support all render targets. Some GPU's only support up to 8 targets or less.

if Assigned(AContext) and Assigned(FFBO) then
  FFBO.AttachTexture(AContext, FMyRenderTargetTexture.GorillaTexture, TRenderTarget.Color_1);

Using multiple targets

To use a render target from the framebuffer object, we need to clear it on each rendering step. After that, we have to activate it for shader usage by the Prepare() method. The prepare method will activate all supplied render targets for shader computation. If you forget to execute prepare() only the default target Color_0 will be available for computation.

We do this all in the render-pass callback method (DoOnRenderPass), when state is “TRenderPassEventState.OnPassBegin”:

[...]
case AState of
  TRenderPassEventState.OnPassBegin :
    begin
      [...]
      LTarget := TRenderTarget.Color_1;
 
      // clear the specific render target buffer
      FFBO.Clear(Point(AContext.Width, AContext.Height), 
        LTarget, TAlphaColorF.Create(0, 0, 0, 0), 0, 0);
 
      // activate the specific render target buffer for shader
      FFBO.Prepare([LTarget]);
    end;
 
    [...]

On “OnPassEnd” state we need to unbind the framebuffer object:

TRenderPassEventState.OnPassEnd :
  begin
    [...]
  end;

In Shader

The usage in your material shader depends on your target setup and the activated targets. For example: Preparing 3 render targets will be used like this:

FFBO.Prepare([TRenderTarget.Color0, TRenderTarget.Color2, TRenderTarget.Color3]);

In Fragment-Shader you'll see, that layout location index do not correspond with the render target index, but with the array index of supplied render targets.

layout(location = 0) out vec4 outColor_0;
layout(location = 1) out vec4 outColor_2;
layout(location = 2) out vec4 outColor_3;
 
[...]
 
// output one with red color
outColor_0 = vec4(1.0, 0.0, 0.0, 1.0);
 
// output two with green color
outColor_2 = vec4(0.0, 1.0, 0.0, 1.0);
 
// output three with blue color
outColor_3 = vec4(0.0, 0.0, 1.0, 1.0);

Iterations

The callback also provides an “ACount” value, which indicates the iteration count for this render-pass. It is possible to set a number of iterations this pass should run. This is very useful for ping-pong rendering techniques like blurring.

Set the “Iterations” property in your render-pass constructor to define the number of iterations. The DoOnRenderPass() method will be called on each iteration step.

Helpful methods

To use a different camera view or change to another projection mode, overwrite the following methods:

  • function GetViewMatrix(const AContext : TContext3D) : TMatrix3D;
  • function GetProjectionMatrix(const AContext : TContext3D) : TMatrix3D;

How to use

Using your own render pass is very easy. Just instanciate it and attach the viewport to it. This will automatically integrate your render-pass in the rendering-pipeline. By the “Enabled” property you can activate or deactivate it at any time.

FMyRenderPass := TMyRenderPass.Create(FGorilla);
FMyRenderPass.Viewport := FGorilla;
FMyRenderPass.Enabled := true;

Next step: Shadows