Model Assembling
A model assembler controls proxy instances of a basis mesh (source object).
The component is a mesh itself, into which proxies are merged. Much faster rendering is possible if proxy meshes are merge into one mesh, instead of rendering each mesh.
Restriction: multi-mesh models will be used as multiple source objects and not merged as one object. For example: if you have a model including a cube and sphere mesh, the cube and sphere will be registered as source objects. They will not be handled as single mesh.
We typically use this technique for grass or trees. It is not suitable for animated meshes.
Example: Grass Model Assembler
In this example we will display grass on multiplied planes inside of the model assembler component. After applying the TGorillaGrassMaterial we are able to render different textures onto those planes and to manipulate vertices.
The result should be a varying grass landscape with waving grass.
- Form1.pas
procedure TForm1.FormCreate(Sender: TObject); var LSrcObj : TPlane; LPoolE : TGorillaBitmapPoolEntry; LGrassMat : TGorillaGrassMaterialSource; LAlg : TGorillaAssemblerFlatFilling; begin // creating the source object - here a plane LSrcObj := TPlane.Create(fGorilla); LSrcObj.Scale.Point := Point3D(4, 4, 4); // creating the grass material source FGrassMat := TGorillaGrassMaterialSource.Create(FGorilla); FGrassMat.Parent := FGorilla; // now we load a pool of grass textures, the material shader // randomly chooses from with FGrassMat do begin LPoolE := Bitmaps.Add() as TGorillaBitmapPoolEntry; LPoolE.DisplayName := 'Grass1'; LPoolE.Bitmap.LoadFromFile('grass1.png'); LPoolE := Bitmaps.Add() as TGorillaBitmapPoolEntry; LPoolE.DisplayName := 'Grass2'; LPoolE.Bitmap.LoadFromFile('grass2.png'); LPoolE := Bitmaps.Add() as TGorillaBitmapPoolEntry; LPoolE.DisplayName := 'Grass3'; LPoolE.Bitmap.LoadFromFile('grass3.png'); LPoolE := Bitmaps.Add() as TGorillaBitmapPoolEntry; LPoolE.DisplayName := 'Grass4'; LPoolE.Bitmap.LoadFromFile('grass4.png'); end; // creating the model assembling control FGrass := TGorillaModelAssembler.Create(FGorilla); FGrass .Parent := FGorilla; FGrass.AddSourceObject(LSrcObj); FGrass.MaterialSource := LGrassMat; FGrass.SetSize(GORILLA_ASSEMBLER_SIZE, GORILLA_ASSEMBLER_SIZE, GORILLA_ASSEMBLER_SIZE); // create an individual filling algorithm to multiply the grass planes // on elder Gorilla3D version TGorillaAssemblerRectFilling LAlg := TGorillaAssemblerFlatFilling.Create(FGrass); try LAlg.Count := 1000; FGrass.Fill(LAlg, true); finally FreeAndNil(LAlg); end;
Interact with grass shader
The default grass shader provides functionality to bend the grass planes at a certain point. To enable interaction, f.e. at mouse position, we can simply configure the TGorillaGrassMaterialSource:
- Form1.pas
FGrassMat.SpotRadius := 0.5; FGrassMat.SpotEnabled := true;
And in the OnMouseMove event we can set the current interaction point like this:
- Form1.pas
procedure TForm1.DoOnViewportMouseMove(ASender : TObject; AShiftState : TShiftState; X, Y : Single); var LPt3D : TPoint3D; LRayPos, LRayDir : TVector3D; begin if FMove then begin if (ssLeft in AShiftState) then begin FGorilla.BeginUpdate(); try LPt3D := FGorilla.ScreenToWorld(PointF(X, Y)); FGorilla.Context.Pick(X, Y, TProjection.Camera, LRayPos, LRayDir); FGrass.RayCastIntersect(LRayPos, LRayDir, LPt3D); // apply scaled light position FGrassMat.Spot := TPoint3D(LPt3D); finally FGorilla.EndUpdate(); end; end; FLatest := PointF(X, Y); end; end;
Example: Terrain Grass Model Assembling
Since v0.8.1+ we've implemented a lot of new backend features (bounding volume hierarchy for TMeshDef, multiple source objects, TGorillaModel support), which allows to multiple meshes and place those onto a terrain surface.
The following example will create 64 assemblers, filled up with 64 copies of a grass template model. The assemblers will be attached as childs to the terrain and rendered above. All assemblers will be placed as grid above the complete terrain.
Notice: We could multiply the template model into a single assembler component, but the idea behind it, is to use the performance optimization of frustum culling. By frustum culling only the visible assembler chunks will be rendered, therefore we can reduce vertex rendering a lot.
So at first we will load a grass template model. Keep the mesh as simple as possible, because vertex count will increase fastly.
To place a grass model copy in correct y-position on the terrain, we need to know vertices of the terrain. The new feature of bounding volume hierarchy (BVH) computation for TMeshDef's helps here a lot. It is 1000 times faster, than iterating of all vertices to find the correct position.
For template model multiplication we use the new TGorillaAssemblerTerrainFilling class, which automatically reads y-position from BVH.
const MAP_SIZE = 900; // terrain size (quadratic) MAP_HEIGHT = MAP_SIZE / 4; var FGrassTemps : Array[0..0] of TGorillaModel; procedure TForm1.CreateGrass(ATerrain : TGorillaTerrain; const AAssetsPath : String); const GORILLA_ASSEMBLER_SIZE = 1; GORILLA_MODEL_GRASS_1 = 'lowpoly-grass-planes.obj'; var LTexPath : String; LGrass : TGorillaModelAssembler; LFillAlg : TGorillaAssemblerTerrainFilling; LChunks : Integer; LChunksPerRow : Integer; i : Integer; LChunkSize : TPoint3D; LX, LZ : Single; begin if not Assigned(ATerrain) then raise Exception.Create('terrain not available - grass will be as child of the terrain'); // load the grass templates LTexPath := IncludeTrailingPathDelimiter(AAssetsPath + 'grass'); FGrassTemps[0] := TGorillaModel.LoadNewModelFromFile(FViewport, nil, LTexPath + GORILLA_MODEL_GRASS_1, []); FGrassTemps[0].Visible := false; // it do not need to be shown // create a list for all 64 assembler chunks FGrassAssemblers := TList<TGorillaModelAssembler>.Create(); // acquire a bounding volume hierarchy for much faster raytracing // after usage, it will be destroyed, because it consumes a lot memory // and we only need it for the moment TMeshDef(ATerrain.Def).AcquireBVH(); try LChunks := 64; LChunksPerRow := Ceil(Sqrt(LChunks)); LChunkSize.X := (MAP_SIZE / LChunksPerRow); LChunkSize.Y := MAP_HEIGHT; LChunkSize.Z := (MAP_SIZE / LChunksPerRow); for i := 0 to LChunks - 1 do begin // create multiple grass assemblers to use frustum culling LGrass := TGorillaModelAssembler.Create(FViewport); LGrass.Parent := FViewport; LGrass.Opaque := false; // allow translucent rendering LGrass.TwoSide := true; LGrass.Name := 'Grass' + IntToStr(i + 1); // add the grass model as source object // multiple source objects are possible and will be chosen randomly LGrass.AddSourceObject(FGrassTemps[0]); // set the size of assembler chunk LGrass.SetSize(LChunkSize.X, LChunkSize.Y, LChunkSize.Z); LX := -(MAP_SIZE / 2) + ((i mod LChunksPerRow) * LChunkSize.X); LZ := (MAP_SIZE / 2) - (Floor(i / LChunksPerRow) * LChunkSize.Z); // place assembler chunk over terrain LGrass.Position.Point := Point3D(LX, 0, LZ); // take the template model material source as material for the assembler // this could be replaced by a grass material shader of course LGrass.MaterialSource := FGrassTemps[0].Meshes[0].MaterialSource; FGrassAssemblers.Add(LGrass); // fill up assembler chunk with 64 copies of our grass template LFillAlg := TGorillaAssemblerTerrainFilling.Create(LGrass, ATerrain); try LFillAlg.Count := 64; LGrass.Fill(LFillAlg, true); finally FreeAndNil(LFillAlg); end; // we put grass assembler into terrain model LGrass.Parent := ATerrain; end; finally // at the end we destroy the bounding volume hierarchy again to free memory TMeshDef(ATerrain.Def).ReleaseBVH(); end; end;
Next step: Inventory